| Ref No: |  |  |  |
|---------|--|--|--|
|         |  |  |  |

#### SKIT, BANGALORE



#### **COURSE PLAN**

# Academic Year AUG 2019

| Program:             | B E – COMPUTER SCIENCE & ENGINEERING |         |             |  |  |  |  |
|----------------------|--------------------------------------|---------|-------------|--|--|--|--|
| Semester:            |                                      | 7       |             |  |  |  |  |
| Course Code:         |                                      | 15CS744 |             |  |  |  |  |
| Course Title:        | UNIX                                 | SYSTEM  | PROGRAMMING |  |  |  |  |
| Credit / L-T-P:      | 3 / 3-0-0                            |         |             |  |  |  |  |
| Total Contact Hours: | 40                                   |         |             |  |  |  |  |
| Course Plan Author:  |                                      | MAMA    | ATHA T S    |  |  |  |  |

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-5600990, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477 www.skit.org.i

## Table of Contents

| J | NIX SYSTEM PROGRAMMING                                    | 1  |
|---|-----------------------------------------------------------|----|
|   | A. COURSE INFORMATION                                     | 3  |
|   | 1. Course Overview                                        | _  |
|   | 2. Course Content                                         | 3  |
|   | 3. Course Material                                        | 4  |
|   | 4. Course Prerequisites                                   |    |
|   | 5. Content for Placement, Profession, HE and GATE         |    |
|   | B. OBE PARAMETERS                                         |    |
|   | 1. Course Outcomes                                        | _  |
|   | 2. Course Applications                                    |    |
|   | 3. Mapping And Justification                              |    |
|   | 4. Articulation Matrix                                    |    |
|   | 5. Curricular Gap and Content                             |    |
|   | 6. Content Beyond Syllabus                                |    |
|   | C. COURSE ASSESSMENT                                      | _  |
|   | Course Coverage      Continuous Internal Assessment (CIA) | 9  |
|   | D1. TEACHING PLAN - 1                                     | _  |
|   | Module - 1                                                | _  |
|   |                                                           | _  |
|   | IntroductionModule - 2                                    | _  |
|   | E1. CIA EXAM – 1                                          |    |
|   | a. Model Question Paper - 1                               |    |
|   | b. Assignment -1b.                                        |    |
|   | D2. TEACHING PLAN - 2                                     |    |
|   | Module - 3                                                |    |
|   | Module - 3<br>Module - 4                                  | _  |
|   | E2. CIA EXAM – 2                                          | -  |
|   | a. Model Question Paper - 2                               | _  |
|   | b. Assignment – 2                                         | _  |
|   | D3. TEACHING PLAN - 3                                     | 16 |
|   | Module - 5                                                |    |
|   | E3. CIA EXAM – 3                                          |    |
|   | a. Model Question Paper - 3                               |    |
|   | b. Assignment – 3                                         |    |
|   | F. EXAM PREPARATION                                       |    |
|   | 1. University Model Question Paper                        |    |
|   | 2. SEE Important Questions                                |    |
|   | G. Content to Course Outcomes                             |    |
|   | 1. TLPA Parameters                                        |    |
|   | 2. Concepts and Outcomes:                                 |    |
|   | ·                                                         |    |

Note: Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

#### A. COURSE INFORMATION

#### 1. Course Overview

| Degree:              | B.E                     | Program:       | CS          |
|----------------------|-------------------------|----------------|-------------|
| Semester:            | VII                     | Academic Year: | 2019-20     |
| Course Title:        | UNIX SYSTEM PROGRAMMING | Course Code:   | 15CS744     |
| Credit / L-T-P:      | 3/3-0-0                 | SEE Duration:  | 180 Minutes |
| Total Contact Hours: | 40                      | SEE Marks:     | 80 Marks    |
| CIA Marks:           | 20                      | Assignment     | 1 / Module  |
| Course Plan Author:  | Mamatha T S             | Sign           | Dt:         |
| Checked By:          |                         | Sign           | Dt:         |
| CO Targets           | CIA Target : 90 %       | SEE Target:    | 80%         |

Note: Define CIA and SEE % targets based on previous performance.

#### 2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

|     | epts per module as in G.                                         |                  |                   |               |
|-----|------------------------------------------------------------------|------------------|-------------------|---------------|
| Mod | Content                                                          | Teachi           | Identified Module | Blooms        |
| ule |                                                                  | ng               | Concepts          | Learning      |
|     |                                                                  | Hours            |                   | Levels        |
| 1   | The ANSI C Standard, The ANSI/ISO C++ Standards,                 | 05               | POSIX standards   | L3            |
|     | Difference between ANSI C and C++,The POSIX                      |                  |                   |               |
|     | Standards, The POSIX.1 FIPS Standard, The X/Open                 |                  |                   |               |
|     | Standards.                                                       |                  |                   |               |
|     | UNIX and POSIX APIs: The POSIX APIs, The UNIX and POSIX          | 03               | API               | L2            |
|     | Development Environment, API                                     |                  | characteristics   |               |
|     | Common Characteristics.                                          |                  |                   |               |
| 2   | File Types, The UNIX and POSIX File System, UNIX and POSIX       | 04               | Kernel support    | L2            |
|     | File Attributes, Inodes in UNIX System V, Application            |                  | for files         |               |
|     | Program Interface to Files, UNIX Kernel Support for              |                  |                   |               |
|     | Files.Relationship of C Stream Pointers and File Descriptors,    |                  |                   |               |
|     | Directory Files, Hard and Symbolic Links.                        |                  |                   |               |
|     | General File APIs, File and Record Locking, Directory File       | 04               | API for file      | L3            |
|     | APIs, Device File APIs, FIFO File APIs, Symbolic Link File APIs. |                  |                   | G             |
|     | Introduction, main function, Process Termination, Command-       | 05               | Process           | L4            |
|     | Line Arguments, Environment List, Memory Layout of a C           |                  | management        | ·             |
|     | Program, Shared Libraries, Memory Allocation, Environment        |                  |                   |               |
|     | Variables, setimp and longimp Functions, getrlimit, setrlimit    |                  |                   |               |
|     | Functions.UNIX Kernel Support for Processes.Process              |                  |                   |               |
|     | Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4      |                  |                   |               |
|     | Functions, Race Conditions, exec Functions, Changing User        |                  |                   |               |
|     | IDs and GroupProcess Accounting, User                            |                  |                   |               |
|     | Identification, Process Times, I/O Redirection.                  |                  |                   |               |
|     | Introduction, Terminal Logins, Network Logins, Process           | 03               | Process           | L4            |
|     | Groups, Sessions, Controlling Terminal, tcgetpgrp and            |                  | relationship      | -,            |
|     | tcsetpgrp Functions, Job Control, Shell Execution of             |                  |                   |               |
|     | Programs, Orphaned Process Groups.                               |                  |                   |               |
| 4   | Introduction, Daemon Characteristics, Coding Rules, error        | 05               | Signal handling   | L3            |
| 4   | Logging, Client-Server Model. The UNIX Kernel Support for        |                  | techniques        | _3            |
|     | signal, Signal Mask, sigaction, The SIGCHLD Signal and the       |                  | looi ii iiqaos    |               |
|     | waitpid Function, The sigsetimp and siglongimp Functions,        |                  |                   |               |
|     | Kill, Alarm, Interval Timers, POSIX.lbTimers.                    |                  |                   |               |
|     | Daemon Characteristics, Coding Rules, error Logging, Client-     | 03               | Daemon            | L3            |
|     | Server Model.                                                    | 53               | characteristics   | LS            |
|     | Overview of IPC Methods, Pipes, popen, pclose Functions,         | 04               | IPC mechanisms    | L4            |
| 3   | Co processes ,FIFOs, System V IPC, Message Queues,               | 54               | ii o meenamismis  | <del>-4</del> |
|     | Semaphores. Shared Memory                                        |                  |                   |               |
|     | Client-Server Properties, Stream Pipes, Passing File             | 04               | Client server     | L3            |
|     | 1500 110 110 110 110 110 110 110 110 110                         | _ ~ <del>4</del> | 301 / 61          | <b>-</b> J    |

| Descriptors, | An    | Open | Server-Version | 1, | Client-Server | communication |  |
|--------------|-------|------|----------------|----|---------------|---------------|--|
| Connection F | uncti | ons. |                |    |               |               |  |

#### 3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used; Free / open source
- 3. Research: Recent developments on the concepts publications in journals; conferences etc.

| 3. Rese       | arch: Recent developments on the concepts – publications in journals; co                                                                                                          |                                       |                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| Modul         | Details                                                                                                                                                                           | Chapters                              | Availability           |
| es            |                                                                                                                                                                                   | in book                               |                        |
| Α             | Text books (Title, Authors, Edition, Publisher, Year.)                                                                                                                            | -                                     | -                      |
|               | 1) Unix System Programming Using C++ - Terrence Chan, PHI, 1999.                                                                                                                  | 1,2,3,4,5,<br>6,7,8,9,1<br>0,11,12,13 |                        |
| 3             | 2) Advanced Programming in the UNIX Environment - W.Richard<br>Stevens, Stephen A. Rago, 3nd Edition, Pearson Education / PHI, 2005.                                              | 15,16,17                              | In Dept/ in<br>library |
| В             | Reference books (Title, Au5thors, Edition, Publisher, Year.)                                                                                                                      | -                                     | -                      |
| 1,2,3,4,<br>5 | 1. Advanced Unix Programming- Marc J. Rochkind, 2nd Edition, Pearson Education, 2005.                                                                                             | -                                     | In Lib                 |
|               | 2. The Design of the UNIX Operating System - Maurice.J.Bach, Pearson<br>Education / PHI, 1987.                                                                                    | -                                     | Not Available          |
| 1,2,3,4,      | 3. Unix Internals - Uresh Vahalia, Pearson Education, 2001.                                                                                                                       | -                                     | In lib                 |
|               | 4. Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data<br>Structures and Algorithms in Python",1 st Edition, Wiley India Pvt Ltd,<br>2016. ISBN-13: 978- 8126562176 | -                                     | In lib                 |
| С             | Example programs links                                                                                                                                                            |                                       |                        |
|               | http://vtuac.in/library/cse/sem7/15cs744/                                                                                                                                         |                                       |                        |
|               | https://www.vturesource.com/vtu-question-papers/CS/<br>2010/10CS62/Unix-System-Programming                                                                                        |                                       |                        |
|               | https://www.guru99.com/must-know-linux-commands.html                                                                                                                              |                                       |                        |
|               | http://cms.gat.ac.in/course/info.php?id=584                                                                                                                                       |                                       |                        |
| D             | Software Tools for implementation                                                                                                                                                 | -                                     | -                      |
| E             | Recent Developments for Research                                                                                                                                                  | -                                     | -                      |
|               |                                                                                                                                                                                   |                                       |                        |
| F             | Others (Web, Video, Simulation, Notes etc.)                                                                                                                                       | -                                     | -                      |
|               |                                                                                                                                                                                   |                                       |                        |

#### 4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content.

| 01000 | 1100 111000 | navo toanne tino | ionowing ocaroos, ropios with ac | 001100 | a 001110111111 |        |
|-------|-------------|------------------|----------------------------------|--------|----------------|--------|
| Mod   | Course      | Course Name      | Topic / Description              | Sem    | Remarks        | Blooms |
| ules  | Code        |                  |                                  |        |                | Level  |

| 1 | 15cs64 | Operating                    | 1/operating    | system | concepts | 6 | L2 |
|---|--------|------------------------------|----------------|--------|----------|---|----|
|   |        | system                       | /Knowledge     | of     | concepts |   |    |
|   |        |                              | operating syst | :em    |          |   |    |
| 2 | 15cs35 | Unix and shel<br>programming |                |        |          |   | L2 |
| 3 | 15cs35 | Unix and shel programming    |                |        |          | 3 | L3 |

#### 5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

| Mod  | Topic / Description | Area      | Remarks      | Blooms |
|------|---------------------|-----------|--------------|--------|
| ules |                     |           |              | Level  |
| 2    | File locks          | placement | Gap          | L3     |
|      |                     |           | seminar      |        |
| 5    | Sockets             | placement | Gap          | L3     |
|      |                     |           | presentation |        |

#### **B. OBE PARAMETERS**

#### 1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts

per Module. Write 1 CO per Concept.

| $\overline{}$ |           | e i co per concept.                 |        |              |              |            | 1          |
|---------------|-----------|-------------------------------------|--------|--------------|--------------|------------|------------|
| Mod           | Course    | Course Outcome                      | Teach. | Concept      | Instr        | Assessme   |            |
| ules          | Code.#    | At the end of the course, student   | Hours  |              | Method       | nt         | Level      |
|               |           | should be able to                   |        |              |              | Method     |            |
| 1 1           | 15CS744.1 | Use runtime & compile time limits   | 05     | POSIX        | Demons       | Student    | L3         |
|               |           | in UNIX platform                    |        | standards    | trate        | presentati | Apply      |
|               |           |                                     |        |              | program      | on of      |            |
|               |           |                                     |        |              | S            | programs   |            |
| 1 1           |           | Understand API characteristics      | _      |              | Reading,     |            | L2         |
|               |           | using POSIX standard                |        | characteris  | discussi     | presentati | Understand |
|               |           |                                     |        | tics         | on           | on         |            |
|               |           |                                     |        |              |              | Question   |            |
|               |           |                                     |        |              |              | &          |            |
|               |           |                                     |        |              |              | answers    |            |
|               |           |                                     |        |              |              |            |            |
| 2             |           | Understand file structure in UNIX   |        |              |              | Question   | L2         |
|               |           | operating system.                   |        | support for  |              | and        | Understand |
|               |           |                                     |        | files        |              | answers    |            |
|               |           |                                     |        |              |              | assignme   |            |
|               | 45007444  | Analy fla manipulation avators      | 0.4    | API for file | Demons       | nt         | 1.0        |
| 2             |           | Apply file manipulation system      | 04     |              |              |            | L3         |
|               |           | calls for different types of files. |        |              | trate        | presentati | Apply      |
|               |           |                                     |        |              | program      | On         |            |
| 3             | 15087445  | Analyze process control primitives  | 05     | Process      | Demons       | Student    | L4         |
| 3             | 1503/44.5 | for different applications in       |        | manageme     |              | presentati | Analyze    |
|               |           | multiuser environment               |        |              | program      | ļ!         | Anatyze    |
|               |           |                                     |        | 111          |              | programs   |            |
| 3             | 15CS744.6 | Identify relationship between       | 03     | Process      | Demons       | programs   | L4         |
| 3             |           | group of processes for job control  | U3     |              |              | assignme   | Analyze    |
|               |           | group or processes for Job Control  |        | n            | program      |            | Anatyze    |
|               |           |                                     |        | P            | program<br>s | unit test  |            |
| 4             | 15CS744.7 | Apply interrupt methods for         | 05     | Signal       | Demons       |            | L3         |
| 4             | 1000/44/  | Typis interrupt methods for         | US     | Signat       | Permons      | Scrimal    | _ე         |

|   |   | handling asynchronous events                                                          |    | handling<br>techniques |                     | assignme<br>nts                       | Apply         |
|---|---|---------------------------------------------------------------------------------------|----|------------------------|---------------------|---------------------------------------|---------------|
| 4 |   | Understand daemon<br>characteristics for coding rules                                 | Ū  | characteris            | discussi            | Question<br>&<br>answers<br>unit test | L3<br>Apply   |
| 5 |   | Distinguish message queues<br>semaphores & shared memory<br>across machine boundaries |    | mechanis<br>ms         | program<br>s in lab | presentati                            | L4<br>Analyze |
| 5 |   | Discover communication between client server using pipes & sockets                    |    | ation                  | /<br>Demons         | seminars                              | L3<br>Apply   |
|   | - | Total                                                                                 | 40 | -                      | -                   | -                                     | L2-L4         |

## 2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

|      | <u> </u>                                                                       |      |       |
|------|--------------------------------------------------------------------------------|------|-------|
| Mod  |                                                                                | CO   | Level |
| ules | Compiled from Module Applications.                                             |      |       |
| 1    | Implementation of programs to check limits in UNIX operating system            | CO1  | L3    |
| 1    | Use of POSIX in Real-time Systems, Assessing its Effectiveness and Performance | CO2  | L2    |
| 2    | Organization of file in the file system of operating system                    | CO3  | L2    |
| 2    | Applying of read and write lock on files.                                      | CO4  | L3    |
| 3    | Create, resume, suspend & kill the process in multitasking environment.        | CO5  | L4    |
| 3    | Switching among multiple jobs in multiuser & multitasking environment.         | CO6  | L4    |
| 4    | Communication between program and operating system                             | CO7  | L3    |
| 4    | Operating system bootstrapping                                                 | CO8  | L3    |
| 5    | Client server communication in distributed computing                           | CO9  | L4    |
| 5    | Remote procedure calls, web, mail severs.                                      | CO10 | L3    |
|      |                                                                                |      |       |

#### 3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability

|             |        |      | • • |
|-------------|--------|------|-----|
| required to | accomp | lısh | ıt  |

| Mod  | Мар | ping | Mapping | Justification for each CO-PO pair                                                | Lev |
|------|-----|------|---------|----------------------------------------------------------------------------------|-----|
| ules |     |      | Level   |                                                                                  | el  |
| -    | CO  | РО   | -       | 'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'              | -   |
| 1    | CO1 | PO1  | 3       | Knowledge of POSIX limits is required to implement programs                      | L3  |
|      |     | PO2  |         | Analyze programs in UNIX operating system using compile time & run time limits   | L3  |
|      |     | PO3  | _       | Design new program using the knowledge of compile time & run time limits         | L3  |
|      |     | P012 | 3       | Learning in the context of technology changes in UNIX versions                   | L3  |
|      | CO2 | PO1  |         | Knowledge of API characteristics is required to implement different system calls | L2  |
|      |     | PO2  |         | Analyze the different system calls using the knowledge of API characteristics    | L2  |
|      |     | PO12 | 2       | Learning in the context of technology changes in UNIX versions                   | L2  |
| 2    | CO3 | PO1  |         | The knowledge of Unix file types are used to solve complex engineering problems. | L2  |

|   |                 | PO12            | 3 | Life long learning is required to explore new UNIX tools                                                                                                                                                                                               | L2 |
|---|-----------------|-----------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | CO4             | PO1             | 3 | The knowledge of Unix file APIs are used to solve complex engineering problems.                                                                                                                                                                        | L3 |
|   |                 | PO2             | 3 | Analyze programs written using different file API's                                                                                                                                                                                                    | L3 |
|   |                 | PO <sub>3</sub> | 3 | Design new programs using the knowledge of file API's                                                                                                                                                                                                  | L3 |
|   |                 | PO12            | 3 | Life long learning is required to explore new UNIX tools                                                                                                                                                                                               | L3 |
| 3 | CO <sub>5</sub> | PO1             | 3 | knowledge of APIs for Processes control is applied to solve complex engineering problems.                                                                                                                                                              |    |
|   |                 | PO2             | 3 | Analyze programs written for multiuser operating system                                                                                                                                                                                                | L4 |
|   |                 | PO3             | 3 | Design different programs using the knowledge of process API's                                                                                                                                                                                         | L4 |
|   |                 | PO4             | 3 | Investigate & interpretation of new programs can do done using process system calls                                                                                                                                                                    | L4 |
|   |                 | PO12            | 3 | Learning in the context of technology changes in UNIX versions                                                                                                                                                                                         | L4 |
|   | CO6             | PO1             | 3 | Knowledge of process relationship is required to implement job control feature in multiuser environment                                                                                                                                                | L4 |
|   |                 | PO2             | 4 | Analyze the relationship between parent & child process                                                                                                                                                                                                | L4 |
|   |                 | PO3             | 4 | Design programs which shows the relationship between parent & child process                                                                                                                                                                            | L4 |
|   |                 | PO4             | 4 | Investigate different programs written to handle job control feature                                                                                                                                                                                   | L4 |
|   |                 | PO12            | 4 | Learning in the context of technology changes in UNIX versions                                                                                                                                                                                         | L4 |
| 4 | CO7             | PO1             | 4 | Knowledge of interrupt & signals is required to perform interrupt handling                                                                                                                                                                             | L3 |
|   |                 | PO2             | 4 | In order to identify, formulate and analyse engineering problems students make use of knowledge of signal and daemon Process functions.                                                                                                                |    |
|   |                 | PO3             | 4 | Design programs to handle synchronous & asynchronous events                                                                                                                                                                                            | L3 |
|   |                 | PO12            | 4 | Learning in the context of technology changes in UNIX versions                                                                                                                                                                                         | L3 |
|   | CO8             | PO1             | 4 | The knowledge of the given specifications of daemon Process functions to demonstrate signal handling are analyzed are examined to solve complex engineering problems                                                                                   |    |
|   |                 | PO2             | 4 | Analyze different daemon coding rules                                                                                                                                                                                                                  | L3 |
|   |                 | PO3             | 4 | Design different programs using daemon coding rules                                                                                                                                                                                                    | L3 |
|   |                 | PO12            | 4 | Learning in the context of technology changes in UNIX versions                                                                                                                                                                                         | L3 |
| 5 | CO9             | PO1             | 4 | Knowledge of inter process communication is required to implement communication across different system                                                                                                                                                | L4 |
|   |                 | PO2             | 4 | Design programs using different IPC mechanisms                                                                                                                                                                                                         | L4 |
|   |                 | PO <sub>3</sub> | 4 | In order to design solutions for complex engineering problems and design system components or processes for open ended engineering problems considering health and safety risks students can make use of Inter process communication using IPC Methods | 1  |
|   |                 | PO4             | 4 | Investigation of inter process communication among different system. The knowledge of Inter process communication using IPC Methods are used to provide valid conclusions.                                                                             | L4 |
|   |                 | PO12            | 4 | Learning in the context of technology changes in UNIX versions                                                                                                                                                                                         | L4 |
|   | CO10            | PO1             | 3 | Knowledge of pipes & sockets is required to implement client server communication                                                                                                                                                                      | L3 |
|   |                 | PO2             | 3 | Analyze different client server communication                                                                                                                                                                                                          | L3 |
|   |                 | PO3             | 3 | Design client server communication using IPC system calls                                                                                                                                                                                              | L3 |
|   |                 | PO12            | 3 | Learning in the context of technology changes in UNIX versions                                                                                                                                                                                         | L3 |

## 4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

| CO - |           | y with mapping tever for each co |     | γpa | II, V | /ILII | COU | 1126  | avera | ige  | alla | UI II I | IEII | L. |    |    |    |
|------|-----------|----------------------------------|-----|-----|-------|-------|-----|-------|-------|------|------|---------|------|----|----|----|----|
| -    | _         | Course Outcomes                  |     |     |       |       | Pr  | ogra  | ım O  | utco | ome  | es      |      |    |    |    | -  |
| Mod  | CO.#      | At the end of the course         | РО  | РО  | РО    | РО    | РО  | POP   |       |      |      |         |      |    |    |    |    |
| ules |           | student should be able to        | 1   | 2   | 3     | 4     | 5   | 6     | 7 8   | 9    | 10   | 11      | 12   | 01 | 02 | О3 | el |
| 1    | 15CS744.1 | Use runtime & compile time       | 2.4 | 2.4 | 2     | 0.6   | -   | -   - | -   - | -    | -    | -       | 2.4  |    |    |    | L3 |
|      |           | limits in UNIX platform          |     |     |       |       |     |       |       |      |      |         |      |    |    |    |    |

15Cs744

| 1 |            | Understand API characteristics 2 using POSIX standard                                                                                                                              | 2.4                 | 2.4                |                      |                   | -                  | -                | -               | -                   | -                   | -                | -                 | 2.4  |              |      | L3           |
|---|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|----------------------|-------------------|--------------------|------------------|-----------------|---------------------|---------------------|------------------|-------------------|------|--------------|------|--------------|
| 2 |            | Understand file structure in UNIX 2 operating system.                                                                                                                              |                     |                    |                      |                   | -                  | -                | -               | -                   | -                   | ı                | ı                 | 2.4  |              |      | L4           |
| 2 |            | Apply file manipulation system a calls for different types of files.                                                                                                               | 2.4                 | 2.4                | 2                    |                   | -                  | -                | -               | -                   | -                   | -                | -                 | 2.4  |              |      | L4           |
| 3 |            | Analyze process control 2 primitives for different applications in multiuser environment                                                                                           | 2.4                 | 2.4                | 2                    | 0.6               | -                  | -                | -               | -                   | -                   | -                | -                 | 2.4  |              |      | L4           |
| 3 |            | Identify relationship between 2<br>group of processes for job<br>control                                                                                                           | 2.4                 | 2.4                | 2                    | 0.6               | -                  | -                | -               | -                   | -                   | 1                | -                 | 2.4  |              |      | L4           |
| 4 |            | Apply interrupt methods for a handling asynchronous events                                                                                                                         | 2.4                 | 2.4                | 2                    |                   | -                  | -                | -               | -                   | -                   | -                | -                 | 2.4  |              |      | L4           |
| 4 |            | Understand daemon 2 characteristics for coding rules                                                                                                                               | 2.4                 | 2.4                | 2                    |                   | -                  | -                | -               | -                   | -                   | -                | -                 | 2.4  |              |      | L4           |
| 5 |            | Distinguish message queues 2<br>semaphores & shared memory<br>across machine boundaries                                                                                            | 2.4                 | 2.4                | 2                    | 0.6               | -                  | -                | -               | -                   | -                   | ı                | -                 | 2.4  |              |      | L4           |
| 5 | 15CS744.10 | Discover communication 2<br>between client server using<br>pipes & sockets                                                                                                         | 2.4                 | 2.4                | 2                    |                   | -                  | -                | 1               | ı                   | -                   | 1                | -                 | 2.4  |              |      | L4           |
| - | CS664PC    | Average attainment (1, 2, or 3)                                                                                                                                                    | 2.4                 | 2.4                | 2                    | 0.6               | -                  | -                | -               | •                   | -                   | •                | -                 | 2.4  |              |      | L2-<br>L4    |
| - |            | 1.Engineering Knowledge; 2.Proble<br>4.Conduct Investigations of Comple<br>Society; 7.Environment and Sus<br>10.Communication; 11.Project M<br>S1.Software Engineering; S2.Data Ba | ex F<br>sta<br>'and | Prok<br>ina<br>age | olen<br>bilit<br>eme | ns; ¿<br>y;<br>nt | 5.Ma<br>8.Ei<br>an | ode<br>thic<br>d | rn<br>s;<br>Fir | Too<br>9.Ir<br>nand | l Us<br>ndiv<br>ce; | age<br>idu<br>12 | e; 6<br>al<br>Lif | The. | Engi<br>d Te | neer | and<br>vork; |

#### 5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

| Mo  |                        | Actions Planned | Schedule Planned | Resources Person  | PO Mapping |
|-----|------------------------|-----------------|------------------|-------------------|------------|
| ule | es es                  |                 |                  |                   |            |
| 1   | Unix features &        | Extra classes   |                  | Concerned faculty |            |
|     | architecture           |                 |                  |                   |            |
| 2   | File locking mechanism | Extra classes   |                  | Concerned faculty |            |
| 5   | Socket API's           | Extra classes   |                  | Concerned faculty |            |

## 6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

| Mod  | Gap Topic          | Area      | Actions Planned | Schedule       | Resources | PO Mapping |
|------|--------------------|-----------|-----------------|----------------|-----------|------------|
| ules |                    |           |                 | Planned        | Person    |            |
| 1    | Hands on Examples  | placement | Planned for     | Conducting     | Concerned |            |
|      | Programs using     |           | hands on        | hands on       | faculty   |            |
|      | POSIX compile time |           | session         | sessions(one   |           |            |
|      | & run time limits  |           |                 | hour per week) |           |            |
| 2    | Hands on Examples  | placement | Planned for     | Conducting     | Concerned |            |
|      | Programs using     |           | hands on        | hands on       | faculty   |            |
|      | UNIX & POSIX files |           | session         | sessions(one   |           |            |
|      |                    |           |                 | hour per week  |           |            |
| 3    | Hands on Examples  | placement | Planned for     | Conducting     | Concerned |            |

|   | Programs using                                |           | hands on                           | hands on                                                | faculty              |  |
|---|-----------------------------------------------|-----------|------------------------------------|---------------------------------------------------------|----------------------|--|
|   | UNIX process API's                            |           | session                            | sessions(one                                            |                      |  |
|   |                                               |           |                                    | hour per week                                           |                      |  |
| 4 | Hands on Example<br>Programs using<br>signals | placement | Planned for<br>hands on<br>session | Conducting<br>hands on<br>sessions(one<br>hour per week | Concerned<br>faculty |  |
| 5 | Hands on Example<br>programs using IPC        |           | Planned for<br>hands on<br>session | Conducting<br>hands on<br>sessions(one<br>hour per week | Concerned<br>faculty |  |

## C. COURSE ASSESSMENT

## 1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for

each student. 1 Assignment per chapter per student. 1 seminar per test per student.

| Mod  | Title                        | Teach. |       | No. o | f quest | ion in | Exam  |     | CO        | Levels |
|------|------------------------------|--------|-------|-------|---------|--------|-------|-----|-----------|--------|
| ules |                              | Hours  | CIA-1 | CIA-2 | CIA-3   | Asg    | Extra | SEE |           |        |
|      |                              |        |       |       |         |        | Asg   |     |           |        |
| 1    | Introduction                 | 08     | 2     | -     | -       | 1      | 1     | 2   | CO1, CO2  | L3,L2  |
| 2    | UNIX Files and APIs          | 08     | 2     | -     | -       | 1      | 1     | 2   | CO3, CO4  | L2, L3 |
| 3    | UNIX Processes and Process   | 08     | -     | 2     | -       | 1      | 1     | 2   | CO5, CO6  | L4, L4 |
|      | Control                      |        |       |       |         |        |       |     |           |        |
| 4    | Signals and Daemon Processes | 08     | -     | 2     | -       | 1      | 1     | 2   | CO7, C08  | L3, L3 |
| 5    | Interprocess Communication   | 08     | -     | _     | 4       | 1      | 1     | 2   | CO9, CO10 | L4, L3 |
| -    | Total                        | 40     | 4     | 4     | 4       | 5      | 5     | 10  | _         | -      |

#### 2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

| Mod<br>ules |                              | Weightage in<br>Marks | CO                 | Levels      |
|-------------|------------------------------|-----------------------|--------------------|-------------|
|             | CIA Exam – 1                 | 15                    | CO1, CO2,CO3, CO4  | L3,L3,L3,L3 |
| 3, 4        | CIA Exam – 2                 | 15                    | CO5CO6, CO7,CO8    | L4,L4,L4,L4 |
| 5           | CIA Exam – 3                 | 15                    | CO9,CO10           | L4,L4       |
|             |                              |                       |                    |             |
|             | Assignment - 1               | 05                    | CO1, CO2, CO3,Co4  | L3,L3,L3,L3 |
|             | Assignment - 2               | 05                    | CO5, CO6, CO7, Co8 | L4,L4,L4,L4 |
| 5           | Assignment - 3               | 05                    | CO9, CO10          | L4,L4       |
|             |                              |                       |                    |             |
| _           | Seminar - 1                  |                       | -                  | -           |
|             | Seminar - 2                  |                       | -                  | -           |
| 5           | Seminar - 3                  |                       | -                  | -           |
|             |                              |                       |                    |             |
| 1, 2        | Quiz - 1                     |                       | -                  | -           |
| 3, 4        | Quiz - 2                     |                       | -                  | -           |
| 5           | Quiz - 3                     |                       | -                  | -           |
|             |                              |                       |                    |             |
| 1 - 5       | Other Activities – UNIT TEST | -                     | CO9, CO10          | L4,L4       |
|             | Final CIA Marks              | 20                    | -                  | -           |

## D1. TEACHING PLAN - 1

## Module - 1

| Title:       | Introduction                                                          | Appr<br>Time:   | 8 Hrs  |
|--------------|-----------------------------------------------------------------------|-----------------|--------|
| a            | Course Outcomes                                                       | -               | Blooms |
| -            | The student should be able to:                                        | -               | Level  |
| 1            | Use runtime & compile time limits in UNIX platform                    | CO1             | L3     |
| 2            | Understand API characteristics using POSIX standard                   | CO2             | L2     |
| b            | Course Schedule                                                       |                 |        |
|              | Module Content Covered                                                | CO              | Level  |
| 1            | UNIX and ANSI Standards:                                              | CO <sub>1</sub> | 12     |
| 2            | The ANSI C Standard, The ANSI/ISO C++ Standards,                      | CO1             | L2     |
| 3            | Difference between ANSI C and C++                                     | CO1             | L2     |
| <u>3</u> 4   | The POSIX Standards, The POSIX.1 FIPS Standard, The X/Open Standards. | CO1             | L3     |
| <u>4</u> 5   | UNIX and POSIX APIs:                                                  | CO <sub>2</sub> | L3     |
| <br>6        | The POSIX APIs                                                        | CO2             | L2     |
| 7            | The UNIX and POSIX Development Environment,                           | CO2             | L2     |
| 8            | API Common Characteristics                                            | CO2             | L2     |
|              |                                                                       |                 |        |
| С            | Application Areas                                                     | CO              | Level  |
| 1            | Implementation of programs to check limits in UNIX operating system   | CO1             | L3     |
| 2            | Implementation of programs using test macros in UNIX operating system | CO1             | L3     |
| d            | Review Questions                                                      | _               |        |
| 1            | Bring out the importance of UNIX operating system.                    | CO1             | <br>L2 |
| 2            | What is POSIX standard ,ANSI C standard , ANSI/ISO C++ standard?      | CO1             | L2     |
| 3            | Difference between ANSI C & C++.                                      | CO1             | L2     |
| 3<br>4       | Explain the different subsets of posix standard.                      | CO1             | L2     |
| <del>4</del> | API basic concepts.                                                   | CO2             | L1     |
| <u>5</u> 6   | Define an API?                                                        | CO2             | 1      |
| 7            | General API characteristics?                                          | CO2             | L2     |
|              | API error names & errno.                                              | CO2             | L2     |
| 9            | What is errno?                                                        | CO2             | L2     |
| 10           | Describe the error status codes.                                      | CO2             | L1     |
|              |                                                                       | CO2             | L2     |
| Ε            | Experiences                                                           | -               | -      |
| 1            |                                                                       | -               | -      |
| 2            |                                                                       |                 |        |
| 3            |                                                                       |                 |        |
| 4            |                                                                       | CO3             | L3     |
| 5            |                                                                       |                 |        |

## Module - 2

| Title:   | UNIX Files and APIs                                                | Appr<br>Time: | 8 Hrs  |
|----------|--------------------------------------------------------------------|---------------|--------|
| Α        | Course Outcomes                                                    | -             | Blooms |
| -        | The student should be able to:                                     | -             | Level  |
| 1        | Understand file structure in UNIX operating system.                | CO3           | L2     |
| 2        | Apply file manipulation system calls for different types of files. | CO4           | L3     |
|          |                                                                    |               |        |
| В        | Course Schedule                                                    | -             | -      |
| Class No | Module Content Covered                                             | СО            | Level  |
| 09       | File Types, The UNIX and POSIX File System,                        | CO3           | L2     |
| 10       | The UNIX and POSIX File Attributes, Inodes in UNIX System V,       | CO3           | L2     |

| 11 | Application Program Interface to Files, UNIX Kernel Support for Files,        | CO <sub>3</sub> | L2     |
|----|-------------------------------------------------------------------------------|-----------------|--------|
|    | Relationship of C Stream Pointers and File Descriptors,                       | 000             |        |
| 12 | Directory Files, Hard and Symbolic Links.                                     | C03             | L2     |
| 13 | UNIX File APIs: General File APIs,                                            | CO4             | L3     |
| 14 | File and Record Locking, Directory File API                                   | CO4             | L3     |
| 15 | Device File APIs,                                                             | CO4             | L3     |
| 16 | FIFO File APIs, Symbolic Link File APIs.                                      | CO4             | L3     |
|    |                                                                               |                 |        |
| С  | Application Areas                                                             | CO              | Level  |
| 1  | Organization of file in the file system of operating system                   | CO3             | L2     |
| 2  | Applying read and write lock on files.                                        | CO4             | L4     |
|    |                                                                               |                 |        |
| D  | Review Questions                                                              | -               | -      |
| 11 | Define file. List & explain different types of file in UNIX operating system. | CO3             | L2     |
| 12 | Explain the concept of file attributes, inodes along with examples.           | CO3             | L2     |
| 13 | When do we use API?                                                           | CO3             | L2     |
| 14 | Write the diagram for UNIX kernel support for files .                         | CO3             | L2     |
| 15 | Compare soft links & hard links.                                              | CO4             | L2     |
| 16 | List and explain general file APIs with prototypes.                           | CO4             | L3     |
| 17 | Compare read lock & write lock with examples.                                 | CO4             | L3     |
| 18 | What is a directory file API?                                                 | CO4             | L2     |
| 19 | Explain the sequence of events that occur when a process calls                | CO3             | L2     |
|    | the close function to close an opened file?                                   |                 |        |
| 20 | Advantages of locking the file?                                               | CO <sub>4</sub> | L3     |
| 21 | Why advisory lock is considered safe?what are the drawbacks of advisory       | CO <sub>4</sub> | <br>L2 |
|    | lock?                                                                         |                 |        |
| 22 | Explain symbolic link file APIs?                                              | CO3             | L2     |
|    |                                                                               |                 |        |
| Е  | Experiences                                                                   | -               | -      |
| 1  |                                                                               |                 |        |
| 2  |                                                                               |                 |        |
| 3  |                                                                               |                 |        |
| 4  |                                                                               |                 |        |
| 5  |                                                                               |                 |        |

# E1. CIA EXAM – 1

## a. Model Question Paper - 1

| Crs ( | Code: | 15CS744     | Sem:          | VII         | Marks:          | 30        | Time:             | 75 minute | es  |    |
|-------|-------|-------------|---------------|-------------|-----------------|-----------|-------------------|-----------|-----|----|
| Cour  | se:   | UNIX SYS    | TEM PROG      | RAMMING     | i               | •         |                   | •         |     |    |
| -     | -     | Note: Ans   | wer any 2     | ks.         | Marks           | CO        | Level             |           |     |    |
| 1     | а     | What is po  | osix standa   | rd? Explair | the different   | subset o  | f posix standard. | 6         | CO1 | L2 |
|       | b     | List any 6  | error status  | s code alo  | ng with its me  | anings    |                   | 6         | CO2 | L2 |
|       | С     | Differentia | ate betweer   | n ANSI C a  | nd C++          |           |                   | 3         | CO1 | L3 |
|       |       |             |               |             |                 |           |                   |           |     |    |
|       |       |             |               |             | OR              |           |                   |           |     |    |
| 2     | а     | Write a c   | or c++ prog   | ram posix   | complement      | t progran | n to check follow | ing 6     | CO1 | L3 |
|       |       | limits:     |               |             |                 |           |                   |           |     |    |
|       |       | i)number (  | of clock ticl | <b>K</b> S  |                 |           |                   |           |     |    |
|       |       |             | m number (    |             | ocesses         |           |                   |           |     |    |
|       |       | iii)Maximu  | m path len    | gth         |                 |           |                   |           |     |    |
|       | b     | Write stru  | cture of pr   | ogram to    | filter out non- | -posix co | mpliant codes fr  | om 5      | CO1 | L3 |
|       |       | user progi  | ram           |             |                 |           |                   |           |     |    |
|       | С     | Explain th  | e common      | characteri  | stics of API.   |           |                   | 4         | CO2 | L2 |
|       |       |             |               |             |                 |           |                   |           |     |    |

| 3 | а | Describe the UNIX Kernel support for files                           | 5 | CO3             | L2 |
|---|---|----------------------------------------------------------------------|---|-----------------|----|
|   | b | Explain directory file and device file APIs?                         | 5 | CO4             | L3 |
|   | С | Differentiate between the stream pointer and file descriptor?        | 5 | CO3             | L2 |
|   |   |                                                                      |   |                 |    |
|   |   | OR                                                                   |   |                 |    |
| 4 | а | List the important uses of fcntl API. Give its prototype description | 6 | CO4             | L3 |
|   | b | Explain the different file types available in UNIX or POSIX system.  | 5 | CO3             | L2 |
|   | С | Differentiate between soft link & hard link with examples.           | 4 | CO <sub>4</sub> | L3 |
|   |   |                                                                      |   |                 |    |

## b. Assignment -1

Note: A distinct assignment to be assigned to each student.

| Note:                                                                             | A dist | tinct assi | gnment to     |                  | to each stud           |               |                   |          |                 |       |
|-----------------------------------------------------------------------------------|--------|------------|---------------|------------------|------------------------|---------------|-------------------|----------|-----------------|-------|
| Model Assignment Questions                                                        |        |            |               |                  |                        |               |                   |          |                 |       |
| Crs C                                                                             |        | 15CS744    |               | VII              | Marks:                 | 5/5           | Time:             | 90 – 120 | minute:         | S     |
| Cours                                                                             |        |            |               | GRAMMING         |                        |               |                   |          |                 |       |
| Note: Each student to answer 2-3 assignments. Each assignment carries equal mark. |        |            |               |                  |                        |               |                   |          |                 |       |
| SNo                                                                               | l      | JSN        |               |                  | ignment De             |               |                   | Marks    | СО              | Level |
| 1                                                                                 |        |            |               |                  | between AN             |               |                   |          | CO1             | L2    |
| 2                                                                                 |        |            |               |                  |                        |               | test macros? L    | ist      | CO1             | L2    |
|                                                                                   |        |            |               |                  | ng with its m          |               |                   |          |                 |       |
| 3                                                                                 |        |            |               |                  | o display PC           | SIX version   | 1.                |          | CO1             | L3    |
| 4                                                                                 |        |            |               | ny 5 compile     |                        |               |                   |          | CO1             | L2    |
| 5                                                                                 |        |            |               |                  | K&RC&AN                |               |                   |          | CO1             | L2    |
| 6                                                                                 |        |            |               |                  | X complian             | t program     | n to check th     | ne       | CO1             | L2    |
|                                                                                   |        |            | following l   |                  |                        |               |                   |          |                 |       |
|                                                                                   |        |            |               | of child pro     |                        |               |                   |          |                 |       |
|                                                                                   |        |            |               | m path leng      |                        |               |                   |          |                 |       |
|                                                                                   |        |            |               | m path leng      |                        |               |                   |          |                 |       |
|                                                                                   |        |            |               |                  | of open files p        |               |                   |          | 00              |       |
| 7                                                                                 |        |            |               |                  | to emulate             |               |                   |          | CO4             | L3    |
| 8                                                                                 |        |            |               | , ,              |                        | the followi   | ng compile tin    | ne       | CO1             | L3    |
|                                                                                   |        |            |               | its minimum      |                        |               |                   |          |                 |       |
|                                                                                   |        |            |               | ental groups     | s<br>f links of a file | ^             |                   |          |                 |       |
|                                                                                   |        |            |               |                  | f simulate no          |               | ronous I/O        |          |                 |       |
|                                                                                   |        |            | d)real sign   |                  | Simulate no            | us asyricin   | TOHOUS IT O.      |          |                 |       |
| 9                                                                                 |        |            |               |                  | nes available          | in LINIX o    | perating syster   | n        | CO3             | L2    |
| 10                                                                                |        |            |               |                  | s along with           |               |                   | 11.      | CO3             | L2    |
| 11                                                                                |        |            |               |                  | ifferent from          |               |                   |          | CO3             | L2    |
| 12                                                                                |        |            |               |                  |                        |               | g than calling (  | าท       | CO3             | L2    |
| 12                                                                                |        |            | user functi   |                  | more time              | CONSUMM       | g than catting t  |          | 003             |       |
| 13                                                                                |        |            | _             |                  | pointer and            | file descrin  | ntor              |          | CO <sub>4</sub> | L3    |
| 14                                                                                |        |            | +             |                  | link and hard          |               | , ,               |          | CO4             | L2    |
| 15                                                                                |        |            |               |                  | utes can't be          |               | and why?          |          | CO4             | L2    |
| 16                                                                                |        |            |               |                  |                        |               | lowing attribute  | 26       | CO3             | L3    |
|                                                                                   |        |            | i) file size  | minarias rie     | caca to chai           | igo tilo loti | towning attribute |          | 003             |       |
|                                                                                   |        |            | ii) user ID   |                  |                        |               |                   |          |                 |       |
|                                                                                   |        |            |               | cess & modif     | ication time           |               |                   |          |                 |       |
|                                                                                   |        |            | iv) hard lin  |                  |                        |               |                   |          |                 |       |
| 17                                                                                |        |            |               |                  | file? Why a            | re the ino    | des unique or     | nly      | CO3             | L3    |
|                                                                                   |        |            | within a f    |                  |                        |               | the inode to      |          | -               | -     |
|                                                                                   |        |            | filename?     |                  |                        |               |                   |          |                 |       |
| 18                                                                                |        |            | Explain UN    | NIX kernel su    | pport for file         | with a nea    | at diagram.       |          | CO3             | L2    |
| 19                                                                                |        |            |               |                  | jeneral file A         |               |                   |          | CO4             | L3    |
|                                                                                   |        |            | i)open() ii)f | cntl() iii)l see | ek                     |               |                   |          |                 |       |

# D2. TEACHING PLAN - 2

## Module - 3

| Title:  | Unix processes and process control                                                                                                                                                | Appr<br>Time:   | 8 Hrs  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|
| Α       | Course Outcomes                                                                                                                                                                   | -               | Blooms |
| -       | The student should be able to:                                                                                                                                                    | -               | Level  |
| 1       | Analyze process control primitives for different applications in multiuser environment                                                                                            | CO5             | L4     |
| 2       | Identify relationship between group of processes for job control                                                                                                                  | CO6             | L4     |
| b       | Course Schedule                                                                                                                                                                   |                 |        |
| lass No | Module Content Covered                                                                                                                                                            | СО              | Level  |
| 1       | The Environment of a UNIX Process: Introduction, main function, Process Termination, Command-Line Arguments,                                                                      | CO <sub>5</sub> | L2     |
| 2       | Environment List, Memory Layout of a C Program,                                                                                                                                   | CO5             | L3     |
| 3       | Shared Libraries, Memory Allocation, Environment Variables, setjmp and longjmp Functions, getrlimit, setrlimit Functions,                                                         | CO <sub>5</sub> | L3     |
| 4       | UNIX Kernel Support for Processes. Process Control: Introduction, Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions, | CO5             | L4     |
| 5       | Changing User IDs and Group IDs, Interpreter Files, system Function, Process Accounting, User Identification, Process Times, I/O Redirection.                                     | CO5             | L3     |
| 6       | Process Relationships: Introduction, Terminal Logins, Network Logins,                                                                                                             | CO6             | L4     |
| 7       | Process Groups, Sessions, Controlling Terminal, tcgetpgrp and tcgetpgrp Functions,                                                                                                | CO6             | L3     |
| 8       | Job Control, Shell Execution of Programs, Orphaned Process Groups.                                                                                                                | CO6             | L4     |
| С       | Application Areas                                                                                                                                                                 | СО              | Level  |
| 1       | Create, resume, suspend & kill the process in multitasking environment.                                                                                                           | CO5             | L4     |
| 2       | Switching among multiple jobs in multiuser & multitasking environment.                                                                                                            | CO6             | L4     |
| d       | Review Questions                                                                                                                                                                  | -               | -      |
| 1       | Explain the following system calls: i)fork ii)vfork iii)exit iv)wait.                                                                                                             | CO5             | L4     |
| 2       | Giving the prototype explain different variants of exec system call                                                                                                               | CO5             | L4     |
| 3       | What is race condition? Write a program in C/C++ to illustrate a race condition.                                                                                                  | CO5             | L3     |
| 4       | How UNIX operating system keeps process accounting?                                                                                                                               | CO5             | L2     |
| 5       | What is job control? Summarize the job control features with the help of a figure.                                                                                                | CO6             | L4     |
| 6       | With a neat block schematic, explain the terminal login process in BSD Unix. What is a session? Explain how you create a session using appropriate shell commands.                | CO6             | L4     |
| 7       | Explain the following:i)wait ii)waitpid                                                                                                                                           | CO5             | L3     |
| 8       | With a neat diagram, explain the memory layout of c program. In which segments are the automatic variables and dynamically created objects are stored?                            | CO5             | L3     |
|         | Write a short note on command-line arguments?                                                                                                                                     | CO5             | L2     |
| 9       | White a short hote on command the arguments                                                                                                                                       |                 |        |
| 9       | Explain the three functions for memory allocation and alternate memory allocators?                                                                                                | CO <sub>5</sub> | L3     |

| 12 | Explain the data structure of parent and child processes after fork? | CO5 | L3 |
|----|----------------------------------------------------------------------|-----|----|
| е  | Experiences                                                          | ı   | -  |
| 1  |                                                                      |     |    |
| 2  |                                                                      |     |    |
| 3  |                                                                      |     |    |
| 4  |                                                                      |     |    |
| 5  |                                                                      |     |    |

# Module - 4

| Tu            |                                                                                                                                                                            |               |        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| Title:        | Signals and Daemon processes                                                                                                                                               | Appr<br>Time: | 8 Hrs  |
| a             | Course Outcomes                                                                                                                                                            | -             | Blooms |
| -             | The student should be able to:                                                                                                                                             | -             | Level  |
| 1             | Apply interrupt methods for handling asynchronous events                                                                                                                   | CO7           | L3     |
| 2             | Understand daemon characteristics for coding rules                                                                                                                         | CO8           | L3     |
| b             | Course Schedule                                                                                                                                                            |               |        |
| lass No       | Module Content Covered                                                                                                                                                     | СО            | Level  |
| 1             | Signals: The UNIX Kernel Support for Signals,signal,                                                                                                                       | CO7           | L3     |
| 2             | Signal Mask, sigaction,                                                                                                                                                    | CO7           | L3     |
| 3             | the SIGCHLD Signal and the waitpid Function,                                                                                                                               | CO7           | L3     |
| 4             | The sigsetimp and siglongimp Functions,                                                                                                                                    | CO7           | L3     |
| 5             | Kill, Alarm, Interval Timers, POSIX.lb Timers.                                                                                                                             | CO7           | L3     |
| 6             | Daemon Processes: Introduction,                                                                                                                                            | CO8           | L2     |
| 7             | Daemon Characteristics, Coding Rules,                                                                                                                                      | CO8           | L3     |
| 8             | Error Logging, Client-Server Model.                                                                                                                                        | CO8           | L3     |
|               |                                                                                                                                                                            |               |        |
| С             | Application Areas                                                                                                                                                          | СО            | Level  |
| 1             | Communication between program and operating system                                                                                                                         | CO8           | L3     |
| 2             | Operating system bootstrapping                                                                                                                                             | CO7           | L3     |
| d             | Review Questions                                                                                                                                                           | -             | -      |
| 1             | What is a signal? Discuss any five POSIX defined signals?                                                                                                                  | CO7           | L2     |
| 2             | What is a daemon? Discuss the basic coding rules.                                                                                                                          | CO8           | L2     |
| 3             | Explain the terms i)signal ii)signal mask                                                                                                                                  | CO7           | L2     |
| 4             | What are daemon processes? Enlist their characteristics. Also write a program to transform a normal user process into a daemon process. Explain every step in the program. | CO8           | L3     |
| 5             | Briefly explain the kill() API and alarm() API?                                                                                                                            | CO7           | L3     |
| 6             | List the timer manipulation APIs in POSIX.1b                                                                                                                               | CO7           | L3     |
| 7             | Discuss daemon characteristics?                                                                                                                                            | CO8           | L2     |
| 8             | Explain the coding rules for daemon process.                                                                                                                               | CO8           | L2     |
| 9             | What is error logging?with a neat block schematic discuss the error login facility in BSD.                                                                                 | CO8           | L2     |
| 10            | Explain the sigaction() function by giving the prototype and discuss its features?                                                                                         | CO7           | L2     |
| 11            | Briefly explain SIGCHLD Signal and the waitpid API?                                                                                                                        | CO7           | L3     |
|               | Evenovious                                                                                                                                                                 |               |        |
| <u>е</u><br>1 | Experiences                                                                                                                                                                |               | _      |
| 2             |                                                                                                                                                                            |               |        |
| 3             |                                                                                                                                                                            |               |        |
| 4             |                                                                                                                                                                            |               |        |

## E2. CIA EXAM - 2

# a. Model Question Paper - 2

| Crs C | Crs Code:15CS744 Sem: VII Marks: 20 Time: 75 n |                          |                                                                                                                                                                                                                     |                  |                 |             |                     | 5 minute | es              |       |
|-------|------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-------------|---------------------|----------|-----------------|-------|
| Cour  | se:                                            | UNIX SYS                 | TEM PROC                                                                                                                                                                                                            | RAMMING          | i               |             |                     |          |                 |       |
| -     | -                                              | Note: Ansv               | wer any 2 (                                                                                                                                                                                                         | questions,       | each carry e    | qual mar    | ks.                 | Marks    | СО              | Level |
| 1     | а                                              | Describe t<br>structures |                                                                                                                                                                                                                     | Kernel sup       | port for prod   | cess. Sho   | w the related da    | ta 6     | CO5             | L3    |
|       | b                                              | What is racondition.     | ace condit                                                                                                                                                                                                          | ion? Write       | a program i     | in C/C++    | to illustrate a rac | e 5      | CO5             | L3    |
|       | С                                              | Explain the I) network   |                                                                                                                                                                                                                     | :<br>minal login | ı               |             |                     | 4        | CO6             | L3    |
|       |                                                |                          |                                                                                                                                                                                                                     |                  | OR              |             |                     |          |                 |       |
| 2     | a                                              | neat block               | What are the different ways in which a process can terminate? With a neat block schematic, explain how a process is launched and terminates clearly indicating the role of C-startup routine and the exit handlers. |                  |                 |             |                     | I        | CO <sub>5</sub> | L4    |
|       | b                                              | What is job<br>figure.   | o control? S                                                                                                                                                                                                        | Summarize        | the job conti   | rol feature | es with the help of | a 7      | CO6             | L3    |
|       |                                                |                          |                                                                                                                                                                                                                     |                  | OR              |             |                     |          |                 |       |
| 3     | а                                              | What is a s              | signal? Disc                                                                                                                                                                                                        | cuss any fiv     | e POSIX defii   | ned signa   | ls?                 | 5        | CO7             | L2    |
|       | b                                              | What is a d              | daemon? D                                                                                                                                                                                                           | iscuss the       | basic coding    | rules.      |                     | 5        | CO8             | L2    |
|       | С                                              | Briefly exp              | lain SIGCH                                                                                                                                                                                                          | ILD Signal a     | and the waitp   | oid API?    |                     | 5        | CO7             | L3    |
| 4     | а                                              | What are o               | daemon pr                                                                                                                                                                                                           | ocesses? E       | nlist their cha | aracteristi | CS.                 | 6        | CO8             | L2    |
|       | b                                              | Explain the features?    | e sigaction                                                                                                                                                                                                         | n() function     | by giving th    | ne prototy  | ype and discuss i   | ts 5     | CO7             | L3    |
|       | С                                              | Discuss da               | aemon cha                                                                                                                                                                                                           | racteristics     | ?               |             |                     | 4        | CO8             | L2    |

## b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

|       | Model Assignment Questions                                                        |         |                |             |                |              |                   |          |        |       |  |
|-------|-----------------------------------------------------------------------------------|---------|----------------|-------------|----------------|--------------|-------------------|----------|--------|-------|--|
| Crs C | ode:                                                                              | 15CS744 | Sem:           | VII         | Marks:         | 5/5          | Time:             | 90 – 120 | minute | S     |  |
| Cours | Course: UNIX SYSTEM PROGRAMMING                                                   |         |                |             |                |              |                   |          |        |       |  |
| Note: | Note: Each student to answer 2-3 assignments. Each assignment carries equal mark. |         |                |             |                |              |                   |          |        |       |  |
| SNo   | (                                                                                 | USN     |                | Assi        | gnment Des     | cription     |                   | Marks    | СО     | Level |  |
| 1     |                                                                                   | ١       | What is a sig  | gnal? Discu | ss any five Po | OSIX defin   | ed signals?       | 6        | CO7    | L2    |  |
| 2     |                                                                                   | 1       | What is a da   | emon? Disc  | cuss the basi  | ic coding r  | ules.             | 5        | CO8    | L2    |  |
| 3     |                                                                                   |         | Explain the t  | erms i)sign | al ii)signal m | ask          |                   | 6        | CO7    | L3    |  |
| 4     |                                                                                   | `       | What are da    | emon proc   | esses? Enlist  | t their cha  | acteristics. Also | 8        | CO8    | L3    |  |
|       |                                                                                   | ,       | write a prog   | ram to tran | sform a norn   | nal user pr  | ocess into a      |          |        |       |  |
|       |                                                                                   | (       | daemon pro     | cess. Expla | iin every step | o in the pro | ogram.            |          |        |       |  |
| 5     |                                                                                   |         |                |             | unction by g   | iving the p  | rototype and      | 5        | CO7    | L3    |  |
|       |                                                                                   |         | discuss its fe |             |                |              |                   |          |        |       |  |
| 6     |                                                                                   |         |                |             | API and alarr  |              |                   | 6        | CO7    | L3    |  |
| 7     |                                                                                   |         |                |             | tion APIs in F |              |                   | 6        | CO7    | L3    |  |
| 8     |                                                                                   |         |                |             |                | ock schen    | natic discuss th  | e 7      | CO8    | L2    |  |
|       |                                                                                   |         | error login fa |             |                |              |                   |          |        |       |  |
| 9     |                                                                                   |         |                |             | ) Signal and   | the waitpi   | d API?            | 6        | CO7    | L3    |  |
| 10    |                                                                                   |         | Discuss dae    |             |                |              |                   | 3        | CO8    | L2    |  |
| 11    |                                                                                   |         |                | mple expla  | in the use of  | setjmp an    | d longjmp         | 6        | CO5    | L3    |  |
|       |                                                                                   |         | functions      |             |                |              |                   |          |        |       |  |
| 12    |                                                                                   |         |                |             | nel support f  | or process   | s. Show the       | 8        | CO5    | L2    |  |
|       |                                                                                   | l       | related data   | structures  |                |              |                   |          |        |       |  |

| 13 | Bring out the importance of locking files. What is the drawback of advisory lock? Explain in brief. | 8 | CO6             | L3 |
|----|-----------------------------------------------------------------------------------------------------|---|-----------------|----|
| 14 | Explain the following system calls: i)fork ii)vfork iii)exit iv)wait.                               | 9 | CO5             | L4 |
| 15 | What is job control? Summarize the job control features with the help of a figure.                  | 7 | CO6             | L3 |
| 16 | How UNIX operating system keeps process accounting?                                                 | 5 | CO <sub>5</sub> | L3 |
| 17 | What is race condition? Write a program in C/C++ to illustrate a race condition.                    | 6 | CO <sub>5</sub> | L3 |
| 18 | Giving the prototype explain different variant of exec system call                                  | 6 | CO <sub>5</sub> | L4 |
|    |                                                                                                     |   |                 |    |
|    |                                                                                                     |   |                 |    |

# D<sub>3</sub>. TEACHING PLAN - 3

# Module - 5

| Title:   | Interprocess communication                                                       | Appr  | 8 Hrs  |
|----------|----------------------------------------------------------------------------------|-------|--------|
|          |                                                                                  | Time: |        |
| a        | Course Outcomes                                                                  | -     | Blooms |
| -        | The student should be able to:                                                   | -     | Level  |
| 1        | Distinguish message queues semaphores & shared memory across machine boundaries  | CO9   | L4     |
| 2        | Discover communication between client server using pipes & sockets               | CO10  | L3     |
| b        | Course Schedule                                                                  |       |        |
| Class No | Module Content Covered                                                           | СО    | Level  |
| 1        | Overview of IPC Methods, Pipes, popen,                                           | CO9   | L3     |
| 2        | pclose Functions, ,Coprocesses,                                                  | CO9   | L3     |
| 3        | FIFOs, System V IPC, Message Queues                                              | CO9   | L4     |
| 4        | Semaphores Shared Memory,                                                        | CO9   | L4     |
| 5        | Client-Server Properties,                                                        | CO10  | L2     |
| 6        | Stream Pipes, Passing File Descriptors,                                          | CO10  | L3     |
| 7        | An Open Server-Version 1                                                         | CO10  | L3     |
| 8        | Client-Server Connection Functions                                               | CO10  | L3     |
| С        | Application Areas                                                                | CO    | Level  |
| 1        | Client server communication in distributed computing                             | CO10  | L4     |
| 2        | Remote procedure calls, web, mail severs.                                        | CO9   | L3     |
| d        | Review Questions                                                                 |       | -      |
| 1        | What are pipes? Write C++ program to send data from parent to child over a pipe. | CO9   | L3     |
| 2        | Write a program to implement popen and pclose system calls                       | CO9   | L3     |
| 3        | Explain the concept of shared memory with an example C/C++ program.              | CO9   | L3     |
| 4        | Explain timing comparison of semaphores versus record locking?                   | CO9   | L4     |
| 5        | Explain the concept of shared memory with an example C/C++ program.              | CO9   | L3     |
| 6        | Explain passing file descriptors over STRAMS-based pipes?                        | CO9   | L3     |
| 7        | What is a STREAMS-Based pipe?                                                    | CO10  | L2     |
| 8        | Explain how to setup connld to make unique connections?                          | CO10  | L3     |
| 9        | What is a socket? Discuss how to it create and destroy a socket?                 | CO10  | L3     |
| е        | Experiences                                                                      | -     | -      |
| 1        |                                                                                  |       |        |
| 2        |                                                                                  |       |        |
| 3        |                                                                                  |       |        |
| 4        |                                                                                  |       |        |
| 5        |                                                                                  |       |        |

## E3. CIA EXAM - 3

# a. Model Question Paper - 3

| Crs Code:15CS744 Sem: |     | VII                               | Marks:      | 30           | Time:                                             | 75 minute   | es               |         |      |       |
|-----------------------|-----|-----------------------------------|-------------|--------------|---------------------------------------------------|-------------|------------------|---------|------|-------|
| Cour                  | se: | Unix syste                        | m progra    | mming        |                                                   |             |                  |         |      |       |
| -                     | -   | Note: Ans                         | wer any 2   | questions    | each carry e                                      | qual mark   | (S.              | Marks   | СО   | Level |
| 1                     | а   | sends "he                         | ello world" | message t    | r limitations?<br>o the child pr<br>e should disp | ocess thro  | ugh the pipe. Th | 6<br>ne | CO9  | L3    |
|                       | b   |                                   |             | -Based pip   |                                                   |             |                  | 5       | CO10 | L2    |
|                       | С   | Discuss the applications of FIFO. |             |              |                                                   |             |                  |         | CO9  | L2    |
|                       |     |                                   |             |              |                                                   |             |                  |         |      |       |
|                       |     |                                   |             |              | OR                                                |             |                  |         |      |       |
| 2                     | a   | <u> </u>                          |             |              | n message qu                                      |             |                  | 7       | CO9  | L4    |
|                       | b   | What do y<br>Explain.             | ou mean     | by passing   | file descriptor                                   | rs betweei  | n processes?     | 5       | CO10 | L2    |
|                       | С   | What is a                         | socket? D   | iscuss how   | it create and                                     | destroy a s | socket?          | 5       | CO10 | L3    |
|                       | d   |                                   |             |              |                                                   |             |                  |         |      |       |
|                       |     |                                   |             |              |                                                   |             |                  |         |      |       |
| 3                     | а   | Explain the                       | e concept   | of shared r  | memory with                                       | an exampl   | le C/C++ prograr | m 7     | CO9  | L3    |
|                       | b   | Explain h                         | ow to setu  | ip connld to | o make uniqu                                      | e connecti  | ons?             | 5       | CO10 | L4    |
|                       | С   | What are                          | semaphor    | es. What is  | their purpose                                     | ).          |                  | 3       | CO9  | L     |
|                       | d   |                                   |             |              |                                                   |             |                  |         |      | L2    |
|                       |     |                                   |             |              | OR                                                |             |                  |         |      |       |
| 4                     | a   | Explain the                       | e different | client serv  | er connection                                     | s function  | s with examples  | 8       | CO10 | L3    |
|                       | b   | Explain pa                        | ssing file  | descriptors  | over STRAMS                                       | S-based pi  | pes?             | 7       | CO9  | L3    |
|                       | С   |                                   |             |              |                                                   |             |                  |         |      |       |
|                       | d   |                                   |             |              |                                                   |             |                  |         |      |       |

## b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

|          | Model Assignment Questions                                                        |                                           |               |            |                |             |               |          |         |       |
|----------|-----------------------------------------------------------------------------------|-------------------------------------------|---------------|------------|----------------|-------------|---------------|----------|---------|-------|
| Crs C    | ode:                                                                              | 15CS744                                   |               | VII        | Marks:         | 5/5         | Time:         | 90 – 120 | minute: | S     |
| Cours    | se:                                                                               | UNIX SY                                   | STEM PROGR    | RAMMING    |                |             |               |          |         |       |
| Note:    | Note: Each student to answer 2-3 assignments. Each assignment carries equal mark. |                                           |               |            |                |             |               |          |         |       |
| SNo      |                                                                                   | USN                                       |               | Assig      | gnment Desc    | cription    |               | Marks    | СО      | Level |
| 1        |                                                                                   |                                           |               |            | matic, explai  |             |               | 6        | CO9     | L2    |
|          |                                                                                   |                                           | used to impl  | ement clie | ent-server co  | mmunica     | ition model.  |          |         |       |
| 2        |                                                                                   |                                           |               |            | erent ways ir  |             |               | 9        | CO9     | L4    |
|          |                                                                                   |                                           |               |            | an get acces   |             |               |          |         |       |
|          |                                                                                   |                                           |               |            | s with their a |             |               |          |         |       |
|          |                                                                                   |                                           |               |            | itrol, send an | d receive   | messages      |          |         |       |
|          |                                                                                   |                                           | from a mess   |            |                |             |               |          |         |       |
| 3        |                                                                                   |                                           | What are sen  |            |                |             |               | 7        | CO9     | L4    |
|          |                                                                                   |                                           |               |            |                |             | e semaphores. |          |         |       |
| 4        |                                                                                   |                                           | What are the  |            |                |             | to create     | 6        | CO9     | L3    |
| <u> </u> |                                                                                   |                                           | and manipula  | <u>.</u>   |                | n.          |               |          | 00-     |       |
| 5        |                                                                                   |                                           | What are the  |            |                |             |               | 4        | CO9     | L2    |
| 6        |                                                                                   |                                           |               |            |                | ivailable 1 | to create and | 6        | CO9     | L3    |
|          |                                                                                   |                                           | manipulate s  |            |                |             |               |          |         |       |
| 7        |                                                                                   |                                           | Write a short |            |                |             |               | 5        | CO9     | L2    |
| 8        | Explain different APIs used with message queues?                                  |                                           |               |            |                |             | 5             | CO9      | L2      |       |
| 9        |                                                                                   | Discuss the applications of FIFO 4 CO9 L2 |               |            |                |             |               | L2       |         |       |
| 10       |                                                                                   |                                           | 5             |            |                |             |               |          | L2      |       |
| 11       | What are pipes? What are their limitations? Write a c                             |                                           |               |            |                |             |               | 8        | CO9     | L3    |

|    | program that sends "hello world" message to the child process through the pipe. The child on receiving this message should display it on the standard output. |   |      |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|----|
| 12 | With a neat block schematic, explain how FIFO can be used to implement client-server communication model.                                                     | 8 | CO9  | L3 |
| 13 | Write a short notes on client sever properties.                                                                                                               | 5 | CO10 | L2 |
| 14 | What do you mean by passing file descriptors between processes?                                                                                               | 6 | CO10 | L3 |
| 15 | What is a STREAMS-Based pipe?                                                                                                                                 | 6 | CO10 | L3 |
| 16 | Explain open server, version 1?                                                                                                                               | 5 | CO10 | L2 |
|    |                                                                                                                                                               |   |      |    |

#### F. EXAM PREPARATION

# 1. University Model Question Paper

| Cour  | se:   | Unix system programming Month                                                                                                                                                                                                                                                                 | / Year | Dec /2          | 2018  |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|-------|
| Crs ( | Code: | 15Cs744 Sem: VII Marks: 80 Time:                                                                                                                                                                                                                                                              |        | 180 m           | nutes |
| -     | Note  | Answer all FIVE full questions. All questions carry equal marks.                                                                                                                                                                                                                              | Marks  | СО              | Level |
| 1     | а     | Write a c++ program to list the actual values of the following system configuration limits on a given UNIX OS.  i) Maximum no. of child processes that can be created.  ii) Maximum no. of files that can be opened simultaneously.  iii) Maximum no. of message queues that can be accessed. | 7      | CO1             | L3    |
|       | b     | Write C++ program to display POSIX VERSION.                                                                                                                                                                                                                                                   | 3      | CO1             | L3    |
|       | С     | List any six values of the global variable errno along with their meanings.                                                                                                                                                                                                                   | 6      | CO2             | L2    |
|       |       | OR                                                                                                                                                                                                                                                                                            |        |                 |       |
| -     | а     | List the differences between ANSI C and K & R Explain                                                                                                                                                                                                                                         | 6      | CO1             | L2    |
|       | b     | Write a c++ program to list the actual values of the following system configuration limits on a given unix OS.  i)Maximum no. of child processes that can be created.  ii)Maximum no. of files that can be opened simultaneously.  iii)Maximum no. of message queues that can be accessed.    | 7      | CO1             | L3    |
|       | С     | Explain the common characteristics of API.                                                                                                                                                                                                                                                    | 3      | CO1             | L2    |
| 2     | а     | Explain the different file types available in UNIX or POSIX system.                                                                                                                                                                                                                           | 5      | CO3             | L2    |
|       | b     | Describe the UNIX Kernel support for files with neat diagram.                                                                                                                                                                                                                                 | 6      | CO3             | L2    |
|       | С     | Explain directory file and device file APIs?                                                                                                                                                                                                                                                  | 5      | CO <sub>4</sub> | L3    |
|       |       | OR                                                                                                                                                                                                                                                                                            |        |                 |       |
| -     | a     | What are APIs? When do you use them? Why are the API more time consuming than the library function?                                                                                                                                                                                           | 5      | CO <sub>4</sub> | L3    |
|       | b     | List all the file attributes along with their meanings. Which of these attributes can t be changed and why? List the commands needed to change the following file attributes. i) file size;ii) User ID; iii) Last access and modification time; iv) hard link count.                          | 7      | CO3             | L2    |
|       | С     | Write a program to implement ls –l command                                                                                                                                                                                                                                                    | 4      | CO <sub>4</sub> | L3    |
| 3     | a     | Write an explanatory note on environment variables. Also write a C/C++ program that outputs the contents of its environment list.                                                                                                                                                             | 5      | CO <sub>5</sub> | L4    |
|       | b     | Describe the UNIX Kernel support for process. Show the related data structures                                                                                                                                                                                                                | 6      | CO <sub>5</sub> | L2    |
|       | С     | What is race condition? Mention & explain routines to avoid race condition.                                                                                                                                                                                                                   | 5      | CO5             | L3    |
|       | d     |                                                                                                                                                                                                                                                                                               |        |                 | L3    |

|   |   | OR                                                                                                                                                                                                                      |   |                 |    |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------|----|
| - | a | With a neat block schematic, explain the terminal login/network login process in BSD Unix. What is a session? Explain how you create a session using appropriate shell commands.                                        | 6 | CO6             | L2 |
|   | b | Explain how the shells execute programs?                                                                                                                                                                                | 4 | CO6             | L2 |
|   | С | Explain the following system calls: i)fork ii)vfork iii)exit iv)wait                                                                                                                                                    | 6 | CO <sub>5</sub> | L4 |
| 4 | a | What is a signal? Discuss any five POSIX defined signals?                                                                                                                                                               | 6 | CO7             | L2 |
|   | b | Explain the terms i)signal ii)signal mask                                                                                                                                                                               | 2 | CO7             | L2 |
|   | С | What are daemon processes? Enlist their characteristics. Also write a program to transform a normal user process into a daemon process. Explain every step in the program.                                              | 8 | CO8             | L3 |
|   |   | OR                                                                                                                                                                                                                      |   |                 |    |
| - | а | What is error logging?with a neat block schematic discuss the error login facility in BSD.                                                                                                                              | 7 | CO8             | L2 |
|   | b | Briefly explain the kill() API and alarm() API?                                                                                                                                                                         | 4 | CO7             | L3 |
|   | С | Mention the different sources of signals. Write a program to setup signals handlers for SIGINT & SIGACRAM signals.                                                                                                      | 5 | CO7             | L2 |
|   |   |                                                                                                                                                                                                                         |   |                 | L3 |
|   |   |                                                                                                                                                                                                                         |   |                 | L3 |
| 5 | a | What are pipes? What are their limitations? Write a C/C++ program that sends "hello world" message to the child process through the pipe. The child on receiving this message should display it on the standard output. | 8 | CO9             | L3 |
|   | b | Explain STREAMS-Based pipe?                                                                                                                                                                                             | 5 | CO10            | L2 |
|   | С | Define the following:  I) semaphores ii) message queues iii) shared memory                                                                                                                                              | 3 | CO9             | L1 |
|   | d |                                                                                                                                                                                                                         |   |                 |    |
|   |   | OR                                                                                                                                                                                                                      |   |                 |    |
|   | а | Which is the fastest form of IPC? Explain.                                                                                                                                                                              | 5 | CO9             | L4 |
|   | b | Explain client server communication using FIFO with neat diagram.                                                                                                                                                       | 6 | CO10            | L3 |
|   | С | Briefly explain the client server functions.                                                                                                                                                                            | 5 | CO10            | L3 |
|   | d |                                                                                                                                                                                                                         |   |                 |    |

# 2. SEE Important Questions

| Cour | ourse: Unix system programming Month / |                                                                                                                                                                                                                                                                                               |           |             |        |  |  |  |  |
|------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------|--|--|--|--|
|      |                                        | 15Cs744 Sem: VII Marks: 80 Time:                                                                                                                                                                                                                                                              | i / i cai | 180 minutes |        |  |  |  |  |
| CISC |                                        | Answer all FIVE full questions. All questions carry equal marks.                                                                                                                                                                                                                              | T _       | -           | liutes |  |  |  |  |
| Мо   | Qno.                                   | Important Question                                                                                                                                                                                                                                                                            | Marks     | СО          | Year   |  |  |  |  |
| dule |                                        |                                                                                                                                                                                                                                                                                               |           |             |        |  |  |  |  |
| 1    |                                        | Bring out the importance of standardizing the UNIX operating system. Lis<br>the differences between ANSI C and K & R C.                                                                                                                                                                       | st 8      | CO1         | 2009   |  |  |  |  |
|      | 2                                      | List all the five feature test macros along with their meanings.                                                                                                                                                                                                                              | 6         | CO1         | 2009   |  |  |  |  |
|      | 3                                      | What are the API common characteristics? List any six values of th global variable errno along with their meanings.                                                                                                                                                                           | 9 10      | CO2         | 2016   |  |  |  |  |
|      | 4                                      | Explain POSIX standards with different subsets of POSIX. Write Caprogram to display POSIX VERSION.                                                                                                                                                                                            | + 8       | CO1         | 2017   |  |  |  |  |
|      | 5                                      | Write a c++ program to list the actual values of the following system configuration limits on a given UNIX OS.  I) Maximum no. of child processes that can be created.  ii) Maximum no. of files that can be opened simultaneously.  lii) Maximum no. of message queues that can be accessed. | 7         | CO1         | 2017   |  |  |  |  |
|      | 6                                      | Write structure of program to filter out non-posix compliant codes from user program                                                                                                                                                                                                          | 5         | CO1         | 2017   |  |  |  |  |
| 2    | 1                                      | Explain the commands to create different file types supported by UNIX.                                                                                                                                                                                                                        | 6         | CO3         | 2016   |  |  |  |  |

|   |   | ,                                                                                                                                                                  |    |                 |      |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|------|
|   | 2 | Explain UNIX kernel support for files with neat diagram.                                                                                                           | 8  | CO3             | 2016 |
|   | 3 | Explain explain the prototype of the following APIs i) open ii) lseek iii) fsat iv) chmod                                                                          | 8  | CO3             | 2018 |
|   | 4 | What is the advantage of locking files? Explain mandatory & advisory locks? Why advisory lock is considered safe? What are the drawbacks of advisory lock?         | 7  | CO4             | 2017 |
|   | 5 | Explain symbolic link file APIs?                                                                                                                                   | 8  | CO <sub>4</sub> | 2016 |
|   |   |                                                                                                                                                                    |    |                 |      |
| 3 | 1 | Write an explanatory note on environment variables. Also write a C/C++ program that Outputs the contents of its environment list.                                  | 6  | CO5             | 2009 |
|   | 2 | What is race condition? Write a program for generating race condition?                                                                                             | 8  | CO <sub>5</sub> | 2016 |
|   | 3 | Explain in detail the family of exec functions.                                                                                                                    | 12 | CO <sub>5</sub> | 2016 |
|   | 4 | Explain the memory layout of C program with neat diagram?                                                                                                          | 7  | CO <sub>5</sub> | 2018 |
|   | 5 | Explain fork and vfork system calls. How fork call differs from vfork? Write program to demonstrate fork & vfork system calls.                                     | 10 | CO5             | 2017 |
|   | 6 | What is job control? What are the three forms of support from operating system required for job control                                                            | 4  | CO6             | 2017 |
| 4 | 1 | What is signal? Discuss any five POSIX defined signals. Explain how to set up a signal handler.                                                                    | 10 | CO7             | 2017 |
|   | 2 | Explain program how to setup a signal handler.                                                                                                                     | 6  | CO7             | 2017 |
|   | 3 | Write C/C++ program to show the use of alarm.                                                                                                                      | 6  | CO7             | 2016 |
|   | 4 | What is daemon process? Explain daemon characteristics & relation to session & process groups.                                                                     | 10 | CO8             | 2016 |
|   | 5 | Explain coding rules for daemon process?                                                                                                                           | 5  | CO8             | 2016 |
| 5 | 1 | What are three different ways in which client sever process can get access to same IPC structure? Explain different prototype of APIs that support these structure | 10 | CO9             | 2018 |
|   | 2 | What is FIFO? Explain how it is used in IPC. Discuss with an example, the client server communication using FIFOs.                                                 | 10 | CO9             | 2017 |
|   | 3 | What are pipes? Write a C++ program to send data from parent to child over a pipe.                                                                                 | 10 | CO9             | 2016 |
|   | 4 | Briefly explain client server functions.                                                                                                                           | 6  | CO10            | 2016 |
|   | 5 | What are stream pipes? Explain passing file descriptors.                                                                                                           | 7  | CO10            | 2015 |
|   | 6 | What is a socket. Describe the socket API.                                                                                                                         | 5  | CO10            | 20   |

## G. Content to Course Outcomes

#### 1. TLPA Parameters

Table 1: TLPA - 15CS744

| Мо  | Course Content or Syllabus                    | Conten | Blooms'  | Final | Identified | Instructi | Assessment  |
|-----|-----------------------------------------------|--------|----------|-------|------------|-----------|-------------|
| dul | (Split module content into 2 parts which have | t      | Learning | Bloo  | Action     | on        | Methods to  |
| e-  | similar concepts)                             | Teachi | Levels   | ms'   | Verbs for  | Methods   | Measure     |
| #   |                                               | ng     | for      | Leve  | Learning   | for       | Learning    |
|     |                                               | Hours  | Content  | l     |            | Learning  |             |
| Α   | В                                             | C      | D        | Ε     | F          | G         | Н           |
| 1   | The ANSI C Standard, The ANSI/ISO C++         | 05     | - L1     | L3    | understan  | Demons    | Student     |
|     | Standards, Difference between ANSI C and C+   |        | - L2     |       | d          | trate     | presentatio |
|     | +,The POSIX Standards,The POSIX.1 FIPS        |        | -L3      |       | Demonstr   | program   | n of        |
|     | Standard, The X/Open Standards.               |        |          |       | ate        | S         | programs    |
|     |                                               |        |          |       |            |           |             |
| 1   | UNIX and POSIX APIs:The POSIX APIs, The       | 03     | - L1     | L2    | understan  | Demons    | Student     |
|     | UNIX and POSIX Development Environment,       |        | - L2     |       | d          | trate     | presentatio |
|     | API                                           |        |          |       |            | program   | n of        |
|     | Common Characteristics.                       |        |          |       |            | S         | programs    |
| 2   | File Types, The UNIX and POSIX File           | 04     | - L1     | L2    | Understa   | Reading,  | Question &  |
|     | System,UNIX and POSIX File Attributes,        |        | - L2     |       | nd         | discussi  | answers     |

15Cs744

Copyright ©2017. cAAS. All rights reserved.

|   | Inodes in UNIX System V, Application<br>Program Interface to Files, UNIX Kernel<br>Support for Files.Relationship of C Stream<br>Pointers and File Descriptors, Directory Files,<br>Hard and Symbolic Links.                                                                                                                                                                                                                                                                                               |    |                            |    |                           | on<br>Hands<br>on<br>sessions | Quiz                                       |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------|----|---------------------------|-------------------------------|--------------------------------------------|
| 2 | General File APIs, File and Record Locking,<br>Directory File APIs, Device File APIs, FIFO File<br>APIs, Symbolic Link File APIs.                                                                                                                                                                                                                                                                                                                                                                          | 04 | - L1<br>- L2<br>-L3        | L3 | Demonstr<br>ate           | discussi<br>on                | Student<br>presentatio<br>n of<br>programs |
|   | Introduction, main function, Process Termination, Command-Line Arguments, Environment List, Memory Layout of a C Program, Shared Libraries, Memory Allocation, Environment Variables, setjmp and longjmp Functions, getrlimit, setrlimit Functions. UNIX Kernel Support for Processes. Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions, Changing User IDs and GroupProcess Accounting, User Identification, Process Times, I/O Redirection. | 05 | - L1<br>- L2<br>-L3<br>-L4 | L4 | Analyze                   | tion<br>Hands                 | Question<br>and<br>answers<br>assignment   |
| 3 | Introduction, Terminal Logins, Network<br>Logins, Process Groups, Sessions, Controlling<br>Terminal, tcgetpgrp and tcsetpgrp Functions,<br>Job Control, Shell Execution of Programs,<br>Orphaned Process Groups.                                                                                                                                                                                                                                                                                           | 03 | - L2<br>- L3               | L4 | Understa<br>nd<br>Impleme | tion<br>Hands                 | Question<br>and<br>answers<br>assignment   |
| 4 | Introduction, Daemon Characteristics, Coding<br>Rules,error Logging, Client-Server Model.The<br>UNIX Kernel Support for signal, Signal Mask,<br>sigaction, The SIGCHLD Signal and the<br>waitpid Function,The sigsetjmp and<br>siglongjmp Functions, Kill, Alarm, Interval<br>Timers, POSIX.lbTimers.                                                                                                                                                                                                      | 05 | - L2<br>- L3<br>-          | L3 | Apply                     | Demons<br>trate<br>program    | presentatio                                |
| 4 | Daemon Characteristics, Coding Rules,error<br>Logging, Client-Server Model.                                                                                                                                                                                                                                                                                                                                                                                                                                | 03 | - L2<br>- L3               | L3 |                           | program                       | presentatio                                |
| 5 | Overview of IPC Methods, Pipes, popen,<br>pclose Functions, Co processes ,FIFOs,<br>System V IPC, Message Queues,<br>Semaphores. Shared Memory                                                                                                                                                                                                                                                                                                                                                             | 04 | - L2<br>- L3<br>-L4        | L4 | Examine                   | program<br>s                  | presentatio                                |
| 5 | Client-Server Properties, Stream Pipes,<br>Passing File Descriptors, An Open Server-<br>Version 1, Client-Server Connection<br>Functions.                                                                                                                                                                                                                                                                                                                                                                  | 04 | - L2<br>- L3               | L3 |                           | program<br>s                  | presentatio                                |

## 2. Concepts and Outcomes:

Table 1: Concept to Outcome - 15CS744

|           |                                                                                                                 |                                           | Table 1. Co                    | oncept to Outcome                                                                                                      | - 1505/44                                        |                                                                                        |
|-----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------|
| Mo<br>dul | Learning or Outcome                                                                                             | Concepts                                  | Final Concept                  | Justification .                                                                                                        | CO Components<br>(1.Action Verb,                 | Course Outcome                                                                         |
| e-<br>#   | from study of<br>the Content<br>or Syllabus                                                                     | from<br>Content                           |                                | (What all Learning<br>Happened from the<br>study of Content /<br>Syllabus. A short<br>word for learning or<br>outcome) | Methodology,<br>4.Benchmark)                     | Student Should be able to                                                              |
| Α         | 1                                                                                                               | 1                                         | K                              | 1                                                                                                                      | М                                                | N                                                                                      |
| 1         | - ANSI C                                                                                                        | -POSIX<br>standards<br>-ANSI<br>standards | POSIX                          | Implement simple programs using POSIX runtime & compile time limits                                                    | Demonstrate compile time & run                   | Use runtime & compile time limits in UNIX platform                                     |
|           | -POSIX API's<br>-API common<br>characteristic<br>s                                                              | characteri                                | API<br>characteristic<br>s     | Understand API<br>characteristics                                                                                      |                                                  | Understand API<br>characteristics using<br>POSIX standard                              |
|           | -file types - UNIX file system - file attributes -inodes in unix system -API to files -kernel support for files | -file                                     | Kernel<br>support for<br>files | Understand kernel<br>support for files in<br>unix operating<br>system                                                  | file API's                                       | Understand file<br>structure in UNIX<br>operating system.                              |
|           | -General file<br>API's<br>-file & record<br>locking<br>-hard link &<br>soft link                                | -file API's I<br>-file locks              | API for file                   | Application<br>program interface<br>for files                                                                          | Different file API's<br>Unix operating<br>system | Apply file<br>manipulation<br>system calls for<br>different types of<br>files.         |
|           | -main processes -process termination -memory layout of C program -kernel support for process                    | processes<br>-process<br>control          | management                     | Analyze different<br>process control<br>API"s                                                                          | process control<br>API's<br>UNIX environment     | Analyze process control primitives for different applications in multiuser environment |
|           | -terminal<br>login<br>-network<br>login                                                                         | ·                                         | Process<br>relationship        | Analyze the<br>relationship<br>between process                                                                         | relationships                                    | Identify relationship<br>between group of<br>processes for job<br>control              |

|   | -process<br>groups<br>-session<br>-job control                                            |                                                              |                        |                                                                  |                                                                |                                                                                |
|---|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|
| ' | -signal mask<br>- sigaction                                                               | -signals<br>-kernel<br>support<br>for<br>handling<br>signals | handling<br>techniques | Apply different<br>signal handling<br>API's to handle<br>signals | Apply<br>signal API's<br>UNIX environment                      | Apply interrupt<br>methods for<br>handling<br>asynchronous<br>events           |
| 4 | characteristic                                                                            | characteri<br>stics                                          |                        | Understand<br>daemon<br>characteristics                          | Understand<br>characteristics<br>UNIX environment              | Understand daemon<br>characteristics for<br>coding rules                       |
| 5 | -popen                                                                                    | -IPC<br>methods<br>-co<br>processes                          | mechanisms             | Inter processes<br>communication<br>techniques                   | Distinguish<br>IPC mechanism<br>UNIX environment               | Distinguish message<br>queues semaphores<br>& shared memory<br>across machine  |
|   | -client server<br>properties<br>-stream pipes<br>-client server<br>connection<br>function | server<br>communi                                            |                        | Client server<br>communication<br>API's                          | Discover<br>client server<br>communication<br>UNIX environment | Discover<br>communication<br>between client<br>server using pipes &<br>sockets |